Silicon Photonics|123 Article(s)
Butler matrix enabled multi-beam optical phased array for two-dimensional beam-steering and ranging
Zuoyu Zhou, Weihan Xu, Chuxin Liu, Ruiyang Xu, Chen Zhu, Xinhang Li, Liangjun Lu, Jianping Chen, and Linjie Zhou
Photonics Research
  • Publication Date: Apr. 26, 2024
  • Vol. 12, Issue 5, 912 (2024)
High-speed GeSn resonance cavity enhanced photodetectors for a 50 Gbps Si-based 2 μm band communication system|Editors' Pick
Jinlai Cui, Jun Zheng, Yupeng Zhu, Xiangquan Liu, Yiyang Wu, Qinxing Huang, Yazhou Yang, Zhipeng Liu, Zhi Liu, Yuhua Zuo, and Buwen Cheng
Photonics Research
  • Publication Date: Apr. 01, 2024
  • Vol. 12, Issue 4, 767 (2024)
On-chip spiking neural networks based on add-drop ring microresonators and electrically reconfigurable phase-change material photonic switches
Qiang Zhang, Ning Jiang, Yiqun Zhang, Anran Li, Huanhuan Xiong, Gang Hu, Yongsheng Cao, and Kun Qiu
We propose and numerically demonstrate a photonic computing primitive designed for integrated spiking neural networks (SNNs) based on add-drop ring microresonators (ADRMRs) and electrically reconfigurable phase-change material (PCM) photonic switches. In this neuromorphic system, the passive silicon-based ADRMR, equipped with a power-tunable auxiliary light, effectively demonstrates nonlinearity-induced dual neural dynamics encompassing spiking response and synaptic plasticity that can generate single-wavelength optical neural spikes with synaptic weight. By cascading these ADRMRs with different resonant wavelengths, weighted multiple-wavelength spikes can be feasibly output from the ADRMR-based hardware arrays when external wavelength-addressable optical pulses are injected; subsequently, the cumulative power of these weighted output spikes is utilized to ascertain the activation status of the reconfigurable PCM photonic switches. Moreover, the reconfigurable mechanism driving the interconversion of the PCMs between the resonant-bonded crystalline states and the covalent-bonded amorphous states is achieved through precise thermal modulation. Drawing from the thermal properties, an innovative thermodynamic leaky integrate-and-firing (TLIF) neuron system is proposed. With the TLIF neuron system as the fundamental unit, a fully connected SNN is constructed to complete a classic deep learning task: the recognition of handwritten digit patterns. The simulation results reveal that the exemplary SNN can effectively recognize 10 numbers directly in the optical domain by employing the surrogate gradient algorithm. The theoretical verification of our architecture paves a whole new path for integrated photonic SNNs, with the potential to advance the field of neuromorphic photonic systems and enable more efficient spiking information processing.
Photonics Research
  • Publication Date: Apr. 01, 2024
  • Vol. 12, Issue 4, 755 (2024)
Universal silicon ring resonator for error-free transmission links
Junbo Zhu, Weiwei Zhang, Ke Li, Bharat Pant, Martin Ebert, Xingzhao Yan, Mehdi Banakar, Dehn T. Tran, Callum G. Littlejohns, Fuwan Gan, Graham Reed, and David J. Thomson
We report the design, fabrication, and characterization of a universal silicon PN junction ring resonator for C band error-free communication links operated up to 50 Gb/s with co-designed optical modulation and detection performance. The universal p-n junction ring device shows co-designed detection responsivity up to 0.84 A/W, in conjunction with a modulation efficiency of ∼4 V·mm and >8 dB optical modulation extinction ratio, enabling C band 50 Gb/s NRZ communication link with a bit error rate ≤3×10-12. Individually, the speed of modulation and detection is measured up to 112 Gb/s and 80 Gb/s, respectively. The principle of co-designing the PN junction ring modulator and detector performance required for error-free communication links can significantly ease the fabrication yield challenges of ring structures by reducing the number of types of devices. The principle can also be applied to O band wavelengths. To the best of our knowledge, for the first time, a device of this type has achieved both error-free modulation and detection operation up to 50 Gb/s in the C band individually or in conjugation as an error-free communication link, which paves the way to realize a >1.6 Tb/s all-silicon WDM-based error-free optical transceiver link in the future and is essential for future programmable photonics circuits.
Photonics Research
  • Publication Date: Mar. 21, 2024
  • Vol. 12, Issue 4, 701 (2024)
Ultracompact silicon on-chip polarization controller|On the Cover
Weike Zhao, Yingying Peng, Mingyu Zhu, Ruoran Liu, Xiaolong Hu, Yaocheng Shi, and Daoxin Dai
On-chip polarization controllers are extremely important for various optical systems. In this paper, a compact and robust silicon-based on-chip polarization controller is proposed and demonstrated by integrating a special polarization converter and phase shifters. The special polarization converter consists of a 1×1 Mach–Zehnder interferometer with two polarization-dependent mode converters at the input/output ends. When light with an arbitrary state of polarization (SOP) is launched into the chip, the TE0 and TM0 modes are simultaneously excited. The polarization extinction ratio (PER) and the phase difference for the TE0/TM0 modes are tuned by controlling the first phase shifter, the polarization converter, and the second phase shifter. As a result, one can reconstruct the light SOP at the output port. The fabricated polarization controller, as compact as ∼150 μm×700 μm, exhibits an excess loss of less than 1 dB and a record PER range of >54 dB for arbitrary input light beams in the wavelength range of 1530–1620 nm.
Photonics Research
  • Publication Date: Jan. 05, 2024
  • Vol. 12, Issue 2, 183 (2024)
High-speed silicon photonic electro-optic Kerr modulation
Jonathan Peltier, Weiwei Zhang, Leopold Virot, Christian Lafforgue, Lucas Deniel, Delphine Marris-Morini, Guy Aubin, Farah Amar, Denh Tran, Xingzhao Yan, Callum G. Littlejohns, Carlos Alonso-Ramos, Ke Li, David J. Thomson, Graham Reed, and Laurent Vivien
Silicon-based electro-optic modulators contribute to easing the integration of high-speed and low-power consumption circuits for classical optical communications and data computations. Beyond the plasma dispersion modulation, an alternative solution in silicon is to exploit the DC Kerr effect, which generates an equivalent linear electro-optical effect enabled by applying a large DC electric field. Although some theoretical and experimental studies have shown its existence in silicon, limited contributions relative to plasma dispersion have been achieved in high-speed modulation so far. This paper presents high-speed optical modulation based on the DC Kerr effect in silicon PIN waveguides. The contributions of both plasma dispersion and Kerr effects have been analyzed in different waveguide configurations, and we demonstrated that the Kerr induced modulation is dominant when a high external DC electric field is applied in PIN waveguides. High-speed optical modulation response is analyzed, and eye diagrams up to 80 Gbit/s in NRZ format are obtained under a d.c. voltage of 30 V. This work paves the way to exploit the Kerr effect to generate high-speed Pockels-like optical modulation.
Photonics Research
  • Publication Date: Dec. 14, 2023
  • Vol. 12, Issue 1, 51 (2024)
103 GHz germanium-on-silicon photodiode enabled by an optimized U-shaped electrode
Yang Shi, Xiang Li, Mingjie Zou, Yu Yu, and Xinliang Zhang
High-performance germanium photodiodes are crucial components in silicon photonic integrated circuits for large-capacity data communication. However, the bandwidths of most germanium photodiodes are limited by the intractable resistance–capacitance parasitic effect. Here, we introduce a unique U-shaped electrode to alleviate this issue, reducing the parasitic effect by 36% without compromising any other performance. Experimentally, a large bandwidth of 103 GHz, an optical responsivity of 0.95 A/W at 1550 nm, and a dark current as low as 1.3 nA are achieved, leading to a record high specific detectivity. This is the first breakthrough to 100 GHz bandwidth among all vertical germanium photodiodes, to the best of our knowledge. Open eye diagrams of 120 Gb/s on-off keying and 200 Gb/s four-level pulse amplitude signals are well received. This work provides a promising solution for chip-based ultra-fast photodetection.
Photonics Research
  • Publication Date: Dec. 08, 2023
  • Vol. 12, Issue 1, 1 (2024)
Thermally tunable GeSi electro-absorption modulator with a wide effective operating wavelength range
Yufei Liu, Jialiang Sun, Xinyu Li, Shuxiao Wang, Wencheng Yue, Yan Cai, and Mingbin Yu
We demonstrate a GeSi electro-absorption modulator with on-chip thermal tuning for the first time, to the best of our knowledge. Theoretical simulation proves that the device temperature can be tuned and the effective operating wavelength range can be broadened. When the heater power is 4.63 mW, the temperature of the waveguide increases by about 27 K and the theoretical operating wavelength range is broadened by 23.7 nm. The experimental results show that the optical transmission line shifted to the longer wavelength by 4.8 nm by every 1 mW heater power. The effective static operating wavelength range of the device is increased from 34.4 nm to 60.1 nm, which means it is broadened by 25.7 nm. The band edge shift coefficient of 0.76 nm/K is obtained by temperature simulation and linear fitting of the measured data. The device has a 3 dB EO bandwidth of 89 GHz at 3 V reverse bias, and the eye diagram measurement shows a data rate of 80 Gbit/s for non-return-to-zero on–off keying modulation and 100 Gbit/s for 4 pulse amplitude modulation in the 1526.8 nm to 1613.2 nm wavelength range as the heater power increases from 0 mW to 10.1 mW.
Photonics Research
  • Publication Date: Aug. 01, 2023
  • Vol. 11, Issue 8, 1474 (2023)
High-efficiency reflector-less dual-level silicon photonic grating coupler
Valerio Vitali, Thalía Domínguez Bucio, Cosimo Lacava, Riccardo Marchetti, Lorenzo Mastronardi, Teerapat Rutirawut, Glenn Churchill, Joaquín Faneca, James C. Gates, Frederic Gardes, and Periklis Petropoulos
Photonics Research
  • Publication Date: Jun. 26, 2023
  • Vol. 11, Issue 7, 1275 (2023)
Inverse design of a Si-based high-performance vertical-emitting meta-grating coupler on a 220 nm silicon-on-insulator platform
Jinhyeong Yoon, Jae-Yong Kim, Junhyeong Kim, Hyeonho Yoon, Berkay Neşeli, Hyo-Hoon Park, and Hamza Kurt
Efficient extraction of light from a high refractive index silicon waveguide out of a chip is difficult to achieve. An inverse design approach was employed using the particle swarm optimization method to attain a vertical emitting meta-grating coupler with high coupling efficiency in a 220-nm-thick silicon-on-insulator platform. By carefully selecting the figure of merit and appropriately defining parameter space, unique L-shape and U-shape grating elements that boosted the out-of-plane radiation of light were obtained. In addition, a 65.7% (-1.82 dB) outcoupling efficiency and a 60.2% (-2.2 dB) fiber-to-chip vertical coupling efficiency with an 88 nm 3 dB bandwidth were demonstrated by numerical simulation. Considering fabrication constraints, the optimized complex meta-grating coupler was modified to correspond to two etching steps and was then fabricated with a complementary metal-oxide-semiconductor-compatible process. The modified meta-grating coupler exhibited a simulated coupling efficiency of 57.5% (-2.4 dB) with a 74 nm 3-dB bandwidth in the C-band and an experimentally measured coupling efficiency of 38% (-4.2 dB).
Photonics Research
  • Publication Date: May. 04, 2023
  • Vol. 11, Issue 6, 897 (2023)
Topics